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ABSTRACT

Let A be the closed unbounded operator in LP(G) that is associated with an ellip-
tic boundary value problem for a bounded domain G. We prove the existence of a
spectral projection E determined by the set I' = {4;0, < arg 1 <6,} and
show that AE is the infinitesimal generator of an analytic semigroup provided
that the following conditions hold: 1 < p < 00; the boundary oI" of T is con-
tained in the resolvent set p(4) of 4; 7/2 < 8, < 6, < 37/2; and there exists a
constant ¢ suchthat (1) | | (1—4) ™" | | < cl| ] for 2eér. The following con-
sequence is obtained: Suppose that there exist constants M and ¢ such that 1€ p(4)
and estimate () holds provided that | A | 2 M and Re A=0.Then there exist boun-
ded projections E~ and E* such that 4 is completely reduced by the direct sum

decomposition L, (G) = E~ Lp G)BET Lp (G) and each of the operators AE~
and —AE™ is the infinitesimal generator of an analytic semigroup.

1. Introduction

Let A be the unbounded operator in L(G) that is associated with an elliptic
boundary value problem for a bounded domain G in R". Suppose that for j = 1,2,
L,={2= re’*, r > 0} is a ray of minimal growth of the resolvent of A.

Recall that ], is a ray of minimal growth of the resolvent of A if there exist
constants M and c¢ such that e p(4) and

(L.1) la -~ el

provided that A e, and |/1| = M. Here p(A) is the resolvent set of A.

Assume in addition that for j=1,2, I, < p(4) and that 0 <o, —o; S 7.
Suppose that 1 < p < co. We prove the existence of a “‘spectral’’ projection E
of A that corresponds to the set I'(a;,a) = {A; «; < argl < «,} and show that
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the operator AE satisfies the following condition: There exists a constant ¢ such

that the estimate
(1.2) |G~ 4By~ | £ ¢/]2]

is satisfied for A ¢ I'(ay, o).

The following consequence is obtained. Suppose that I/, and I_,,, are rays
of minimal growth of the resolvent of A. Then there exist bounded projections
E- and E* in L,(G) such that the following assertions are satisfied: L,(G)
=E"L,(G)®E*L,G) and 4 is completely reduced by this direct sum decom-
position. Moreover both AE~ and—AE™ are infinitesimal generators of analytic
semigroups.

These results improve the results of [2] where it was assumed that p = 2, that
the elliptic system associated with A reduces to a single differential operator of
order @ and that there exist rays of minimal growth of the resolvent of A that
divide the complex plane into angles less than wn /v. The last assumption implies
that the generalized eigenfunctions of 4 are complete in L,(G). See [1]. This
condition, however, is superfluous for various applications, for example, for the
study of the existence and regularity of solutions of the parabolic equation
du [dt — A(tyu = f. See [3].

The author is indebted to Professor R.T. Seeley for the communication of the
results of [6] prior to publication and for suggesting that Lemma 3 might be
useful in extending the results of [2] to systems.

The notations and definitions that we use are introduced in Section 2. Section 3
contains a preliminary result and a description of those results of [1], [5] and [6]
that we use in Section 1. The main results are stated and proved in Section 4.

2. Notations and definitions

Let G be a bounded domain in R” with an infinitely differentiable boundary
dG and closure G. Denote by C®(G) (C*(G)) the set of I-tuples of infinitely
differentiable complex valued functions that are defined in G (G). As usual CJ(G)
is the subset of C®(G) consisting of those functions in C*(G) the support of which
is a compact subset of G. For 1 < p < w0 and w = 0,1,:--, H”’’(G) is the completion
of C*(G) under the norm

(2.1) z (L | D*f(x)| *dx )”P

el 0

We use the standard notations x = (x,,---,x,), D; = —id/0x;, D =(Dy,--+,D,)
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and D*=D}'---Dy. a= (%, -,,) is a multi-index of non-negative integers,
]a] = X¥'_,« and for £ e R, &%= &3 ..o ED,

Let L(x,D) = Z}450(x)D* be an m x n differential system defined in
OcR'. For Xe0 and € R, set 6,L(x, &) = 2y = 3(¥)C"

Let O’ = R~ Suppose that L(x, D) is defined in a neighborhood in
RY. of {x;x'e€ 0’ x* =0} and is given by L(x,D)= 32 A,(x,x, D)D" Let
A,(0) be the differential system in R*~! that satisfies 4,(0) = 4,(x’,0, D,.). Denote
by o,L(x’,&',D,) the ordinary differential system, in the variable ¢, defined by
6, L(x",&, D) = LP_o0(A(0) (x",ENDP™" Here R ={x;x'eR""%x,=0},
D,= —id/otand &eR1.

Let {0;}, j=1,-,N, be a set of local coordinates for G. Suppose that for
j=1,---,m the points in O;are coordinates of points in G and that for j=m+ 1,
«+,N and x€0;, x = (x’,x,) where x’€0/ <= R"~! and x, is a ‘“‘normal” var-
iable. Thus x, = 0 and the tuples (x’,0), x’ € O;, are coordinates of pointsin dG.

Finally let A(x,D) be an I x | differential system that is infinitely differentiable
in G. Suppose that A(x, D) is elliptic of order  in G (i.e., for x € G and & 5 0 the
matrix o,A4(x, ) is non-singular). Let B(x,D) j=1,---,0l/2 be a 1 x [ infinitely
differentiable system in G. Denote by w; the order of B;. We shall need later the
following Agmon’s conditions for the ray l,={i; A= re®, r= 0}:

Condition 1. ¢,A(x,&) has no eigenvalues on I, for xe G and ¢ #0.

Condition II. Let m+1=j<N. For x'€0j, &eR""' and Ael, such

that |§’ + [ /1! # 0, the ordinary boundary value problem in x,:

2.2 0,A(x', &', D, yu = Au for x, = 0
.3) 0,,B;(x",¢',D, Ju=g, forx,=0andj=1,-,0l/2
2.4 lim, _,,u(x,)=0

has a unique solution for every choice of the complex numbers g; j = 1,---,wl/2.

See [1] and [5]. Here A(x, 0) is written in terms of the local coordinates O;.
Observe that if conditions I and II are satisfied on a ray I, there existsa § > 0

such that the same conditions are satisfied on I, provided that | ¢ — 0] <.

For fe C3(G), fis the Fourier transform of f given by

@.9) 70 = e ax

£, is the partial Fourier transform of f defined by
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. ) = [ e ax

Let T(ay,a;) = {A; a; < argd < a,} and denote by y(x;,,) the boundary of
I'(x,,o,) that is positively oriented with respect to I'(ay,a,). For n=1,2, -,
Yoy, ) = Plarg, 05) N{A; |l| < n} and I'°(x;,a,) is the interior of T.

Given a Banach space X we denote by X (a,,a,,c) the class of linear operators
in X that possess the following properties: 4 is closed, the domain D(A4) of 4 is
dense in X, the spectrum o(A4) of A satisfies 6(4d) = I'(«,,«,), and there exists a
constant ¢ such that for 1¢ I'(x;,a;) we have

Q.7 G- ge/|2] .

It is a well known result (cf. [4]) that if Ae X(og,00,¢) and n/2 < a; < &, < 3 /27,
then A is the infinitesimal generator of an analytic semigroup.

3. Preliminaries
The following Lemma is used in the next section.

LemMMA. 3.1 Let A be a closed and densely defined linear operator in a
Banach space X. Let n[2 <oy <a, < 3n[2. Suppose that for i =1,2,---1, is a
ray of minimal growth of the resolvent of A and that l,, < p(A). Assume that
there exists a constant M such that the estimate

(3.1 H% fy e (1 - A)‘ldA” <M

holds for ze T%(n[2 — ay, 37 /2 — a,). Here y = y(xy, 0y). Then the limit

. 1 Az -1
(3.2 zlirg P fy (A — A" "xdA
zelO(n/2—a1,3n,2—a2)
exists for every x € X. Let E be the bounded operator in X defined by
(3.3 Ex = lim | (A —A)"'xdA.
t-0 Y

Then E isa projection such that for x € D(A) we have ExeD(A) and AEx=EAx.
The operator AE satisfies AE € L.(ay,0,,0).

Proor. We shall use the fact that if /, is a ray of minimal growth of the resolvent
of A, then there exist positive constants &, ¢, and R such that for Ae (@ —¢,8 +¢)
N{i; ll[ = R} we have 1€ p(A4) and
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(3.4 |G- <c/|A].

To verify this assertion observe that pe p(4) and (u—A4)~! = (u—)(A—-A4)~!
+1)"'(A— A)~* provided that 2ep(4) and that |(u—4) (A—A)~'| <1.It
follows from this remark and from the assumptions of the present Lemma that
there exist constants M and ¢ > 0 such that for i=1,2, we have A eX(; + 6 — 27,
oy — 0,0)-

Let S(z) be the semigroup defined in I'°(n /2 — «,37/2 — ;) by

S(z)=2lm, f & (A —Aytda.,

Y

(3.5

To check that S(z) has the semigroup property note that

(3.6  S(z)S@E) = ('271?;)2 fy (L — A)"dA fy e — A)dp

where the curve y’ is obtained from y by a slight translation to the right. Using 3.6,
the resolvent equation (1 — A)™* —(u— A" ' =(u— )L — A)~1(u — A"}, and
the standard techniques of operational calculus we find that S(z,)S(z,)
= S(zy + 22)-

Since D(A) is dense in X and 3.1 holds, it suffices to show that the limit 3.2
exists for every x € D(A4) in order to prove that this limit exists for every x € X. The
relation

3.7 MA—A)y t=AQ -1 +1
and the assumption that A is closed imply that for x € D(A)

— 1 A3y -19-1
(3.8) S(z)x = i J; ,e (A —A)" 12" 14xdA

where 7y, is the path obtained by joining the tworays on y N {4; Ill 2 r}tothe
arc {4;|A| =r, a; Sargh S a,} and r is chosen so that {1; [A| <} = p(4). It
follows from 3.8 that for x € D(4), the limit 3.2 exists and that

= 1 — -17-1
(3.9) Ex = '—2'1—r~l—' J;r (l A) A~ tAxdA.

A consequence of the semigroup property of S(z) is that the bounded operator
E defined by 3.3 is a projection. Also, since A is closed, for x e D(4) and >0,
we have S(t)x € D(4) and AS(t)x = S(f)Ax. This implies that for x € D(4), we
have Ex € D(A) and AEx = EAx. Note that for i = 1,2, we have
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(3.10) AE€ X(o; + 6 — 21, o, — 8, ©).

This follows from the definition of 6 and from the fact that for Ae p(4) — {0}
we have A e p(AE) and

(3.11) A—AE)"'=(QA—-A)'E+ A" 'I-E).

" Let Ty(r) be the semigroup defined by T,(r) = S(&f™2~ 1 +¥2py L [ _ E for
r> 0and T;(0) = I. It is easily seen that T,(r) is bounded and strongly continuous

for r =20 and it follows from 3.7 that for r > 0 we have
d

(3.12) =T = M IDART, (7).
A consequence of 3.12 is that the infinitesimal generator J, of T,(r) is an extension

of ¢*/2~**UVAE Using the Hille-Phillips theorem we find that {4;Rel > 0}
< p(J,) and that there exists a ¢ such that

(3.13) JieX(@®@2-6/3,3n/2+68/3,¢).
* The inclusion {4; ReA > 0} < p(J,) and 3.10 guarantee that
pJ1) Np(e ™2~ DAy 2 g5
and this implies that J, = /™2~ *¥24E_ Combining 3.13 with 3.10 we find that
(3.19) AE € X(ay, oy + 7, ¢).

Siinilarly 'Cr2- "D F — J, where J, is the infinitesimal generator of the
semigroup Ty(r) given by Ty(r) =S "2 %2) L [_E for r>0 and
T,(0) = I, and we have

(3.15) AE e X(xy — 7, oy, ©).
A consequence of 3.14 and 3.15 is that 4 € X (a4, @5, ).

Let G be a bounded domain in R” with an infinitely differentiable boundary 4G.
Let A(x,D) be an I x I elliptic system of even order w that is infinitely dif-
ferentiable in G. Let B; (x,D) j=1,---,wl/2 be the boundary operators that are
associated with the elliptic system. Suppose that the 1 x | differential system
Bj(x, D) has order w; < w and that Bj(x, D) is infinitely differentiable in G. Suppose
that 1 < p < c0 and denote by H*#(G, B) the closure, in H*?(G), of the set of
functions u in C*(G) that satisfy Bju =0 on 0G for j = 1,--- wl /2. As usual we
associate with A(x,D), B{x,D) j=1,---wl/2 and G the unbounded operator
A% in H%?(G) that satisfies D(4}) = H®” (G,B) and A%u = A(x, D)u for
ue H*'?(G, B).
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The question of existence of rays of minimal growth of the resolvent of
A} was investigated in [1], [5] and [6]. In the remainder of this section, we cite
for convenience some known results of these works that will be used later on.

Agmon’s conditions I and II of Section 1 guarantee that the ray I, is a ray of
minimal growth of the resolvent of A5’([1], [5] and [6]). Also if conditions T and
Il are satisfied for 6e[a;,a,], there exist constants ¢ and R such that
A€ p(A%) and

(3.16) [ (2= 4~ = e/|a].
for 2€T(xy,a;) with | 2] 2 R.
We shall use in the sequel a parametrix for (1— 42" with A e I, that is defined

in [5] provided that conditions I and II are satisfied on I,. The parametrix Py(1)
of order zero is given by

. N N
(3.17) PH)= X C) - X DW
i=1

j=m+1

where C;(1) (A€ 1,) is a pseudodifferential operator and for fe CF(G)
(3.18)  C;(Mf(x) = Qn) "Y;(x) f e™X0(E, 1) (0,A(xE) — 1)~ (@) (©)dE.

Dj(4) is defined for fe C3 (G) by
(3.19) DS (0) = 2m) ™" * 'y ,(x) f €0 (@, Nd(x', %, 5B (GNNE9)dEds

where ¢, j=1,---,N is a partition of unity of G subordinate to the system of
coordinate neighborhoods O, with the properties described in Section 1. The
scalar function , is infinitely differentiable in G and the support of y; is contained
in 0;. 0(¢,4) is infinitely differentiable for £eR* and iel, 6(6,4) =1 for
|€]* +]A]*® =1 and 6(¢,2) =0 for |£]* + |A|¥*< 4. Similarly 6'(",2) is
infinitely differentiable for &’ ¢ R*~* and Ael, 6'(¢',4) = 1 for | &> + [A|" =1
and 0'(Z’, ) = Ofor |£'|* + | A]** < 4.

The I x [ matrix d is defined for x, 20, s2 0'and for £’ and Ael; such that
&|+[4] #0 and satisfies the estimates

a’ ’ ! b
| Dy D D} d(x’, x,, €', 5, 3)|

(3.20)

(A

c“,pexp[ — Cl(xv + S)(] Ell + ]llllw)](!éll + Illl/.w)l—a)-lzﬂ—wp
See [5]. The following Lemmas of [6] are used in Section [4]. These Lemmas
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are proved in [6] and are used there to estimate the L, norms of singular integral
operators that are derived from C;(1) and D(2).

LeMMA 1. Let1 < p < 0, 0< R < . There is a constant ¢ = c¢(p,v, R) such
that if k(x, &) vanishes for ]xl =R and lf,"”,D;‘ng(x,f)] <1 for Ioc] <v+1
and , ﬂ[ < v then the estimate

(3.21) | @)~ f €%K(x, &) FOE | yam S ¢ flryam
holds for fe c§(R").

Given k and f that satisfy the assumptions of Lemma 1 we write

(3.22) Op(k)f(x) = (27)"" j e (x, O)/(2) de.

LemMMA 2. Let 1<p< . There is a constant ¢ = c(p,v,R) such that if
k(x',x,, &', 2) has support in | x'| < R and satisfies

(3.23) [&|"1[DEDE k(x', x,,&', )| S (x, +9) 7!
Jors>0, x, >0, ]ﬁ’l <vand Ioc’] < v then the estimate
(24)  |@m) ! f e k(e x,, £ AAE, ) dEds |1 ) S o a'y

holds for every feci(R') with support in the interior of R.). As usual
R, ={x,xeR",x,20}.

Given k and f that satisfy the assumptions of this Lemma we write
(3.25) O'p(k)f(x) = 2r)™**! f ¥ k(x', x,, &, ) FUE, 5)dE ds.

LEMMA 3. Let1 < p < . Suppose that k(x',x,,&',s,r) vanishes for l x’[ ZR
and that there is a constant ¢ such that

(326) ID::Dg"k(x,s xv,f',S, r), _S_ e—t‘(xv+3)(|§'|+’)(l€/, + r)l -0~

for la'l <v and lﬁ’l < v and with 2 1. Then for each p there is a constant
¢, = ¢4(p, ¢, R,v) such that for f€ cZ(R") with support in the interior of R’, we have

e = €1l leymy)

(3.27) \O'p(frur“"‘ kdr )/

forallr,2r =2 1.
Finally we observe that the following estimates are proved in [5] and [6]:
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Suppose that conditions I and II are satisfied on l, and choose R so that 1 e p(4)
for Ael, with Il] = R. Then there exists a constant ¢ such that for 1el, and
feC§(G) we have

(3.28) lcnf] et +|Ap2f]  i=1-N
and
(3.29) IDAf| et +|AD~Y S| i=m+1,-,N

and there exists a constant ¢ such that
(330) [ @~ 4Dt = Po@)S] S et +[2] )7 A]

provided that A€, ]A[ = R and feCy(G). The norms mentioned in estimates
(2.28)~(2.30) are the norms of elements in H>?(G).

For 1el; we continue to denote by C,(1), D;(4) and Py(1) the extensions of
C;(%), D;(A) and Py(4) to bounded operators in H>?(G).

4. Theorems and proofs

THEOREM 4.1. Let ©/2 <oy <o, < 3n/2. Suppose that conditions I and 11
are satisfied on l,, and that l,, < p(Af) for i = 1,2. Then there exists a constant M
such that for zeT°xn /2 — ay, 3n/2 — a,), we have

@.1) f = Ap | S,

ProoF. The proof of Theorem 4.1 depends on the following Lemmas.

LemMA 4.1 Assume that conditions I and II are satisfied on l,, and that
l,, = p(4}) for i =1,2. Suppose that n|2 < o, < &, < 37/2. Then there exists a
constant M such that

4.2) " 771;- f, (€A — A5~ — Py(A))dA “ <M

Jor zeT%(w /2 ~ ay, 31/2 — ay).
Proor. Lemma 4.1 is an immediate consequence of estimate (3.30).

LemMA 4.2, Assume that conditions I and II are satisfied on 1, for i =1,2
and suppose that n[2 < o; <a, < 3n/2. Set C(A) = C,(%) for Aey and for some
Jjwith 1 £j < N. Then there exists a constant M such that

4.3) "371;1— f, e“C(/l)dl” <M
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for zeT%(m 2 — ay, 37 /2 — ay).

PrOOF. Let y be a real valued infinitely differentiable function such that y(¢)=0
for [¢] <1 and x(&) =1 for |¢| = 2. For zeT%(n/2 — a;,3n/2 — a,) set

(4.4 a1<x,f,z>=—2}z—iw(x) [ 106 -na
and
49 @052 =5 V6 | FUED - 1E) @A)~ D7l

Choose non negative numbers r, and r, so that for every x and £ # 0 the eigenval-
ues of 0, A(x,¢) satisfy 2r,|£| < | 1|Y® <4 r,|&]. Let L~(R) be the boundary of
Ty, 05) N{A; 7R < | 2]V < r,R}. Let ze T°(n /2 — a;,37/2 — a,) and suppose
that |« < v + 1and |B| £v. Then |€|’DiDfa,(x,£,2) isa linear combination of
terms of the type

@6 o | L0 f o T OELOIDIDE (A &) = D7

with|a1| + ]azl [oc| and Iﬁx [ + |ﬂzl— lﬁ[ Setting A —]él“’ult is easily seen
that if | B,| =0 there exists a ¢ such that (4.6)is bounded by
4.7) ¢ sup f | D¥)| | DEDE 0,4k, 1) — 1)~ |dp.

=1 JLT(1)
For |B,|#0, Di'y(¢) vanishes for |¢| < 1andfor [¢] = 2. For 1 £ |&] <2 the
path of integrationin (4.6) can be deformed to the boundary of I'(x;, ;) N{A; r,
<|A|"® < 2r,} and the integral thus obtained is bounded by a constant inde-
pendent of x, ¢ and z. Asaresult there exists a ¢ such that

4.8) &7 | D% D ay(x,8,2)| s .

Now a,(x, ¢, z) = 0for lf[ =2. For] §| < 2, the path of integration in (4.5) can
be deformed to the boundary of I'(a;, ;) N {4;] A|M® < 2r,}. 1t follows from the
definition of A(¢, 1) that thereexistsa ¢ such that

4.9) |€|7|DiDEay(x.¢,2)| s ¢
for] ozl Sv+1, ,/31 Svand zel'°(n/2 — a4, 37/2 — a,).
Using (4.4), (4.5) and the definition of C(4) we find that for fe CZ(G)

(4.10) ((‘2}7 fv e‘=C(,1)dA> f)(x)=(27r)'” f €™ (a(x,8,2) + ay(x, &, 2) f(E)deE.

(4.10) and estimates (4.8) and (4.9) combined with Lemma 1 guarantee the existence
of a constant M such that (4.3) is satisfied.
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LemmAa 4.3. Suppose that conditions .I and II are satisfied on' the ray I,
Let D(%), 2 €l,, be one of the families D (A) given by (3.19). Then there exists
a constant M such that

@.11) l-ii—lf e"D(A)dll <M
lg

for all z such that Re(ze'®) < 0.

Proor. It follows from estimate (3.20) and from the definition of D(A) that
thereexist ¢, and ¢, suchthat for A€, and z with Re(z¢"®) < 0, for [«’[ < v and
for [ ﬂ’] < v the estimate

4.12) | DF DE e Y(x)0'(E, Dd(x', x,,',5,4)
< ey OIS (i [ 4| eyt —o e
is satisfied. It follows from (4.12) and Lemma 3 of Section 3 that (4.11) holds with

Iy replaced by I, < n} and with a constant M independent of n = 1,2,
A consequence of (3.29) is that for z with Re(ze'®) < 0

4.13) L f D()dA = lim —L_ e*D(3)dA.
2ni Jp,

no o i lan{as)a|Sn}

Hence (4.11) follows.

A consequence of Theorem 4.1 is the following Theorem.

THEOREM 4.2, Assume that conditions I and II are satisfied on l,, and that
I, = p(A%) for i =1,2. Let 0 <0, <0, <2n and suppose that §,—0,<T. For
fe D(AR) let

(4.14) Ef= 5~ f AN A~ AD T AkfdA .

r(81,62)

Here r is chosen so that {A;|2

S ryc p(4). Then E, has an extension to a
bounded projection in H%?(G) that we continue to denote by E,. For
feD(A4p) we have E,fe D(A}) and AJE f=E A}f. Furthermore o(A%E,)—{0}
= 0(4%) NT(0,,0,) and ARE € Z(Gl,Oz,c) .

ProoF. The assumptions of this theorem imply that conditions I and 11 for the
elliptic system e’A(x, D) and the boundary operators B;(x, D) j=1,--- wl 2, are sat-
isfied on the rays lyy, and lgg,.Also e APis the operator in H °*(G) that is associated
with €"?4(x, D) and Bj(x,D) j=1---wl/2. It follows from these remarks that we
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may assume without loss of generality that z/2 < 8, < 0,<3n/2. As has already
been mentioned before there exists a 4> 0 such that conditionsIand ITare satisfied
on lyfor6e[6,,0, + 28] U[0,,0, — 26] and such that 4§ e (0, + 26 —2x,60,,¢)
and A% e X (6, — 2n,0, — 25, ¢). This implies that A satisfies the assumptions of
Theorem 4.1 with o, =8, + J and a, =0, — 4. Also it is easy to verify that for
fe DY)

.15) E,f= 2L 17N — AB) ABfd.

T Jye@reaz)

Using Theorem 4.1, Lemma 3.1 and observing that 3.9 holds, we find that E, has
an extension to a bounded projection in H*"?(G). Also it follows from Lemma 3.1
and from the definition of  that to complete the proof it is sufficient to check that
o(ARE,) o a(Af) NT(8,,0,). Suppose that 1,ea(4p) NT(0;,0,)andlet f be an
eigenfunction of 4§ corresponding to the eigenvalue A,. Then asis easily checked

(4.16) L AN A — AR~ rALfdA =T
218 Jyy01,02)
A consequence of (4.15) and (4.16) is that E,f= f, ARE,f= Aof and i, € 6(A} E,)
It will be convenient in the sequel to denote the operator E, of Theorem 4.2 by
E6,,0,).

THEOREM 4.3. Assume that n[2<0,<0,<3n/2, —n2< ¢, <P, <m/2
and that conditionsI and 11 are satisfied on l, provided that 6¢ (¢, ¢,) U (6,,0,).
Suppose that for i =1,2, we have ly, € p(A}) and 1, € p(A}). Let E,=E(6,,0,)
and let E,=E(¢,, $,). Denote by E, the spectral projection of Af associated with
the set {1; 1¢1'(0,,6,) UL (¢,,¢,)}. Then

2
4.17 H°?(G) = X @ EH""0).

i=0
The limits

.1 _

4.18 lim —— 2 — AD)~ifd)
@“.19) lm o | =AY
and
(4.19) lim —. (L — 4By 'fda

nvo 2T Jynsi,60)

exist for every fe H*?(G). Also
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(4.20) Ef= lim —— (= AB)"Yfdh + (0, — 0,) [2nf
now 2T J im0,

and

@2)  Ef= lm —— (A — AD"fdA+ (§, — ) 2.

n- 2mi P é1,62)

ProOF. Fort> 0let

4.22) S,(t) = —1.— M — AD)1da
21 J y(41,62)

and put

4.23) S,() = L e YA — ADy L da.

21 Jyo1.00)
Then for fe H*?(G) and i = 1,2, E,f=lim,,, S;(t)f. Also

= 1 — A1
(4.24) Ey= > — fa (A—A45""t da

where 9 is the boundary of {1; 1¢T'(8,,6,) UT(¢;,4,), | 2| £ R} and Ris chosen
so that {1; 2¢(0,,0,) UT(¢,,¢.), | 4| = R} < p(4h).

It is easy to verify, using the standard techniques of operational calculus, that
for t >0 S;(1)S,(t) = S,(1)S,(t) = 0 and that for i =1,2, S(t)E, = E,S,(t)=0.
As a result E;E; = E;E; =0 provided that i,j = 1,2,3and i # j, and this implies
that the sum X2, @ E;H®?(G) is direct. To check that T2, ®E; H**(G)
= H%?(G) it is sufficient to verify that for fe D(4Z) we have Y2, E;f=f. Let
fe D(AR). Using (3.9) we find that
Ef+Ef=—— f AT — AZ)™ ABfdA

b

(4.25) 2mi r(01,02)

1 -1 -1
—_ ATHA — AR T ARfdA
2ni Jyio0.60) 2 Asf

where r is chosen so that {4; ll <r} = p(A45). Observing that there exists a
constant ¢ such that

(4.26) [Ga-4p~t]=e/|4
provided that A¢I'(8,,0,) UT(¢y,¢,) and | 1|2 R and using (3.7) we find that
.27 Ef+E,f= - 371?1— fa A= AR~ fdA+f

i.e., E1f+E2f= _Eof+_f-
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Furthermore for fe D(A§) we have

1

2ni J o000

() =AD" L fdd = 7;_ o 2 A A
¥701:62

(4.28)
1

. f AT YdA
21i ) yncor.60)

and the limit 4.18 exists. Here y2(6,0,) = y,(0,0,) N {#; | 4| < n}.
Using (3.11) and the fact that AgEfe X(0,,8,,¢), we verify that there exists a
constant ¢ such that

1 .
(4.29) ——f 4 — AB)TLE,dA “ <c
! 2mi ~/~(61-on( ? '

for n = 1,2,---. Similarly there exists a constant ¢ such that (4.29) holds with E,
replaced by E,. The boundedness of AE, and (3.11) guarantee that there exists a
constant ¢ such that (4.29) holds with E, replaced by E,. It follows from (4.17)
that there exists a ¢ such that

(4.30) ”31—1 fm 'M(). — A7 da Hg c

forn = 1,2,---. The relation (4.30) combined with the existence of the limit (4.18)
for fe D(A}) guarantee that the limit (4.18) exists for every fe H*?(G).

The existence of the limit (4.19) is proved in a similar way.

To show that (4.20) holds it is sufficient to check that (4.20) is satisfied for
f€D(Af). For such £, (4.20) follows from (3.9) and from the relation

1
2ni 7(81.62)

2TYA — AR ARfdD = 3_:{— f (A—Ap)~'fd2
¥

"(01,82)

4.31)
t
- = A=Y d).
2mi y(81,0;) f
The proof of 4.21 is similar.

From Theorem 4.2 and 4.3uwe get

COROLLARY 4.1. Suppose that conditions I and Il are satisfied on I, and
i_,,,z. Then there exist bounded projections E, and E; in H>?(G)such that the
following is satisfied: H®?(G) = E,,_Hb"’(G) ) E;HO_"’ (G). A3 is completely
reduced by this direct sum decomposition and each of the operators A43E, and

— ABE, is the infinitesimal generator of an analytic semigroup.
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ProOF. Let Ay e p(A4%). Replacing 45 by A% — A, I if 0¢ a(Af) we conclude
that it is sufficient to prove the corollary with the additional assumption
0 € p(A53). It follows from the assumptions on I, that there exists a 6 > 0 such
that conditions I and 1I are satisfied on I, provided that ] 6+ n/2[ £6. The
discreteness of the spectrum of A§ and the assumption that 0 € p(A5) guarantee
that the assumptions of Theorem 4.3 are satisfied for some 6; and ¢; i = 1,2. Put
E; =E, +E,and let E, = E, where E;, i = 0,1,2, are the projections defined in
Theorem 4.3. A consequence of Theorem 4.3 is that

H?(G) = E,H**(G)® E, H*(G)

and that Afis completely reduced by this direct sum decomposition. Theorem 4.2
implies that AZE, € 2(0,,0,,c) and that ALE, e X (¢, ¢,,¢). It follows from
these relations that each of the operators A3E, and—AfE, is the infinitesimal
generator of an analytic semigroup (cf. [4]). Also, since AZE, is bounded, the
same result holds for AZE, + ALE,.
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