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ABSTRACT 

Let A be the closed unbounded operator in Lp(G) that is associated with an ellip- 
tic boundary value problem for a bounded domain G. We prove the existence of a 
spectral projection E determined by the set 1 ~ ---- {~; 01 ~ arg ;t _< 02} and 
show that AE is the infinitesimal generator of art analytic semigroup provided 
that the following conditions hold: 1 < p < oo ; the boundary OF of F is con- 
tained in the resolvent set p(A) of A; n/2 < 01 < 02 < 3n/2; and there exists a 
constant e suchthat ( 1 ) [ I  ( 2 - A ) - I  I ] ~ c/l~l for2~OF. The following con- 
sequence is obtained: Suppose that there exist constants M and e such that 2 ~ p (A) 
and estimate (I) holds provided that [ ~ [ >= M and Re 2 =0.Then there exist boun- 
ded projections E -  and E + such that A is completely reduced by the direct sum 
decompositionLp (G) = E -  Lp (G) G E + Lp (G) and each of the operators AE- 
and - -AE + is the infinitesimal generator of an analytic semigroup. 

1. Introduction 

Let  A be the unbounded  operator  in Lp(G) that  is associated with an elliptic 

boundary  value problem for  a bounded  domain  G in RL Suppose that  f o r j  = 1,2, 

l~s = {4; )~ = rel% r >_ 0} is a ray o f  minimal  growth o f  the resolvent o f  A. 

Recall that  Io is a ray o f  minimal growth o f  the resolvent o f  A if  there exist 

constants  M and  c such that  2 ~ p(A) and  

(1.1) 1I(2- A)-I II c/l l 
provided that ~ e Io and 121 >-- M. Here p(A) is the resolvent set of A. 

Assume in addit ion that  for  j = 1 ,2 ,  I~, a c p(A) and that  0 < ~2 - ~J < n. 

Suppose that 1 < p < oo. We prove the existence of a "spectral" projection E 

of A that corresponds to the set F ( ~ 1 , ~ 2 )  = {~.; ~1 < arg2 < ~2} and show that 
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the operator AE satisfies the following condition: There exists a constant c such 

that the estimate 

(1.2) II (~, - AE)-I 1[ ~ c/I,~l 
is satisfied for ~, r F(cq, ~2). 

The following consequence is obtained. Suppose that I~/2 and l_~/a are rays 

of minimal growth of the resolvent of A. Then there exist bounded projections 

E-  and E § in Lp(G) such that the following assertions are satisfied: Lv(G ) 

= E-Lp(G)@ E+L~(G) and A is completely reduced by this direct sum decom- 

position. Moreover both AE- a n d - A E  § are infinitesimal generators of analytic 

semigroups. 

These results improve the results of [2] where it was assumed that p = 2, that 

the elliptic system associated with A reduces to a single differential operator of 

order co and that there exist rays of minimal growth of the resolvent of A that 

divide the complex plane into angles less than con Iv. The last assumption implies 

that the generalized eigenfunctions of A are complete in Lp(G). See [1]. This 

condition, however, is superfluous for various applications, for example, for the 

study of the existence and regularity of solutions of the parabolic equation 

du/dt - A(t)u =f. See [3]. 

The author is indebted to Professor R.T. Seeley for the communication of the 

results of 1-6] prior to publication and for suggesting that Lemma 3 might be 

useful in extending the results of [2] to systems. 

The notations and definitions that we use are introduced in Section 2. Section 3 

contains a preliminary result and a description of those results of [1], 1-5] and 1-6] 

that we use in Section 1. The main results are stated and proved in Section 4. 

2. Notations and definitions 

Let G be a bounded domain in R v with an infinitely differentiable boundary 

t~G and closure G. Denote by C| (C~(G)) the set of l-tuples of infinitely 

differentiable complex valued functions that are defined in G (G). As usual C*~(G) 

is the subset of C| consisting of those functions in C| the support of which 

is a compact subset of G. For 1 < p < oo and co = 0,1,..., H~"P(G) is the completion 

of C~(G) under the norm 

lal_-<~ 

We use the standard notations x = (xl,...,x~), Dj = - i a / d x j ,  D = (D1,...,D,) 
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and D'=D~I . . .D~  v. 0~ = (0q,...,0~,) is a multi-index of non-negative integers, 

[~l = ]~=x0qand for ~ R  v, ~ = ~ '  ... ~v. 

Let L(x ,D ) =  ]~l~l<_o,a~(x)D ~ be an m x n differential system defined in 

O c R ' .  For X ~ O  and ~ R  ~ , set o'o,L(x,~ ) = ~l,l=o,a~(x)~ ". 

Let O' c R ~-~. Suppose that L(x, D) is defined in a neighborhood in 

R ~+ of (x; x'  e O' x ~ = 0} and is given by L(x, D)= ~i~ o Ai(x', x, Dx.)Dx v~,- i. Let 

&(0) be the differential system in R T M  ~ that satisfies A~(0) = A~(x', O, Dx,). Denote 

by a,oL(x',~',D,) the ordinary differential system, in the variable t, defined by 

tr~oL(x, ' ~,, Dt ) = ~,i=oa~(Ai(O))(x~ ,,~,)D tr Here R+" = (x; x' ~ R ' - l , x ~  = 0}, 

D t = - ia /dt  and ~ ' s R  "-1 . 

Let {Oj}, j = 1, . . . ,N,  be a set of local coordinates for C. Suppose that for 

j = 1,..., m the points in Oj are coordinates of points in G and that for j =  m + 1, 

..., N and x ~ O j, x = (x ' ,xO where x ' e  Oj ~ R ~-1 and x~ is a "normal"  var- 

iable. Thus x~ > 0 and the tuples (x', 0), x'  s 0~, are coordinates of points in aG. 

Finally let A(x, D) be an l x l differential system that is infinitely differentiable 

in C. Suppose that A(x, D) is elliptic of order co in d (i.e., for x s C and ~ ~ 0 the 

matrix ao, A(x,~) is non-singular). Let Bj(x ,D) j  = 1, ...,oal/2 be a 1 x I infinitely 

differentiable system in G. Denote by ~oj the order of By. We shall need later the 

following Agmon's conditions for the ray lo = {2; ;t = re ~~ r > 0} : 

Condition 1. tr,oA(x, 0 has no eigenvalues on lo for x ~ d and ~ ~ 0. 

Condition H. Let m + l  < j < N .  For x ' sO~,  ~ ' s R  ~-~ and 2 ~ I  o such 

that Ir +l l o, the ordinary boundary value problem in x~: 

ao, A ( x ,  ~ ,Dx)u  2u for x~ > 0 (2.2) ' ' ' = = 

(2.3) ' ' ' O  = = a~jBi(x , { , x~)u gj forx~ 0 a n d  j =  1,...,oM/2 

(2.4) lim~ _~ u(x,) = 0 

has a unique solution for every choice of the complex numbers gj j = 1, ..., col/2. 

See [1] and ]5]. Here A(x, 0) is written in terms of the local coordinates Oj. 

Observe that if conditions I and II are satisfied on a ray lo there exists a t5 > 0 

such that the same conditions are satisfied on l~, provided that ] q~ - 01 < ~. 

F o r f ~  C~(G), f i s  the Fourier transform of f given by 

(2.5) f({) = s  e ix~f (X) dx. 

j'~ is the partial Fourier transform of f defined by 
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fR e- ~ 'r f ( x )  dx ' .  (2.6) f~(~',x~) = ~-~ 

Let F(~l,e2) = {2; el < arg2 < e2} and denote by ?(el,e2) the boundary of  

F(ea,e2) that is positively oriented with respect to F(el,e2). For n = 1,2,. . . ,  

= and F~ is the interior of  F. 

Given a Banach space X we denote by Y~ (~1, ~z, c) the class of linear operators 

in X that possess the following properties: A is closed, the domain D(A) of A is 

dense in X, the spectrum a(A) of A satisfies a(A) ~ F ( ~ ,  ~2), and there exists a 

constant c such that for 2 r  we have 

(2.7) I1( - A)-lll =< c/1 1 
I t  is a well known result (cf. [4]) that if A e I2 (cq, e2, c) and rc/2 < el < ez < 3/2~, 

then A is the infinitesimal generator of an analytic semigroup. 

3. Preliminaries 

The following Lemma is used in the next section. 

LE~,IMA. 3.1 Let A be a closed and densely defined linear operator in a 

Banach space X.  Let re~2 < ~l < cr < 3n/2. Suppose that for i = 1,2,... l~l is a 

ray of minimal growth of the resolvent of  A and that l~, c p(A). Assume that 

there exists a constant M such that the estimate 

(3.1) ~ e~(2 - A)- ld2  < M 

holds for z e F~ - al, 3~/2 - a2). Here ~ = )'(al, a2). Then the limit 

(3.2) ,-,01im 1_~2ui fv ca'(2 - A ) - l xd2  

z �9 F ~  31 t l2 - c t z )  

exists for every x e X.  Let E be the bounded operator in X defined by 

Ex = lira f e~t(2-A)-axd2.  (3.3) 
t o o  Jy 

Then E is a projection such that for x e D(A) we have Ex ~D(A) and AEx=EAx .  

The operator AE satisfies AE e ]~(~a,~2,c). 

PROOF. We shall use the fact that if lo is a ray of minimal growth of the resolvent 

of  A, then there exist positive constants e, c, and R such that for 2 ~ F ( 0 - e ,  0 +e) 

~{2 ;12[  > R }  we have 2ep(A)  and 
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(3.4) l[ (4 - A)-1[1 _-<c/] h I . 

To verify this assertion observe that # e p(A) and ( # - A )  -1 = ( ~ - 2 ) ( 2 - A )  - t  

+ I)-~(2 - A) -1 provided that 2ep(A)  and that 1] (# - 4) (2 - A) -111 < 1 it 

follows from this remark and from the assumptions of  the present Lemma that 

there exist constants M and 5 > 0 such that for i =  1,2, we have A eZ(e~ + 5 -21:, 

e~-  ~,c). 
Let S(z) be the semigroup defined in F ~  al, 3 ~ / 2 -  32) by 

(3.5) S(z) - 1 f~ e l~ (4 - A) -1 d2 2hi 

To check that S(z) has the semigroup property note that 

(3.6) S(zl)S(z2) = ( 2~ f f ' eXZ(i- A)-ld2f,, e"~(~- A)-ld~ 

where the curve 7' is obtained from ~ by a slight translation to the right. Using 3.6, 

the resolvent equation (2 - A) -1 - (# - A) -1 = (# - 2)(2 - A)-  1(# - A) -1, and 

the standard techniques of  operational calculus we find that S(zi)S(z2) 
= S ( z l  + z2). 

Since D(A) is dense in X and 3.1 holds, it suffices to show that the limit 3.2 

exists for every x e D(A) in order to prove that this limit exists for every x e X. The 

relation 

(3.7) ).(2 - A)-  1 = A(2 - A)-  1 + I 

and the assumption that A is closed imply that for x e D(A) 

1 f~ e~.,(2_ A)_12_iAxd 2 (3.8) S(z)x = 2rd , 

where 7, is the path obtained by joining the two rays on 7 (~ {4; ]2[ >__ r} to the  

arc {4; [2[ = r, cq < arg2 < ~2} and r is chosen so that {4; ]2[ < r} cp(A). It 

follows from 3.8 that for x e D(A), the limit 3.2 exists and that 

1 f~ (4 - A)-  12- iAxd2. (3.9) Ex--  2~---i- r 

A consequence of  the semigroup property of  S(z) is that the bounded operator 

E defined by 3.3 is a projection. Also, since A is closed, for x eD(A) and t>0 ,  

we have S(t)x e D(A) and AS(t)x = S(t)Ax. This implies that for x e D(A), we 

have Ex e D(A) and AEx = EAx. Note that for i = 1, 2, we have 
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(3.10) AE e ~Z(~ i + 6 - 2rr, ~i - 6, c). 

This follows from the definition of 6 and from the fact that for 2 e p(A) - {0} 

we have 2 e p(AE) and 

(3.11) (2 - AE) -1 = (2 - A ) - I E  + 2-1(1 - E). 

Let Tl(r) be the semigroup defined by Tl(r)= S(e~(~/2-'l+~/2)r)+ I -  E for 

r > 0 and 7"1(0 ) = I. It is easily seen that Tl(r) is bounded and strongly continuous 

for r > 0 and it follows from 3.7 that for r > 0 we have 

d Tl(r ) = ei(~/2_,,+~/2)AETl(r)" (3.12) "dr 

A consequence of 3.12 is that the infinitesimal generator J1 of T1 (r) is an extension 

of efC"/2-"+~/2)AE. Using the HiUe-Phillips theorem we find that {2; ReX > 0} 

c PU~) and that there exists a c such that 

(3.13) J1 e ~](~r/2 - 6/3, 3rc/2 + 6/3,c). 

The inclusion {2; Re2 > 0) c p(J~) and 3.10 guarantee that 

P(J1) n p(e~(~/2-~ + ~/2)AE) ~ 

and this implies that Ja = e t("/2-'' +~/2)AE. Combining 3.13 with 3.10 we find that 

(3.14) AE e ~](cq, ~ + rr, c). 

Similarly e ~(3"/2-~-~/2)AE = J2 where J2 is the infinitesimal generator of the 

semigroup T2(r) given by Tz(r) = S(ei~3"/2-"-o/~)r) + I - E for r > 0 and 

T2(0) = 1, and we have 

(3.15) AE e ~(o~ 2 - lr, ~z, c). 

A consequence of 3.14 and 3.15 is that A e Y~(el, e2, c). 

Let G be a bounded domain in W with an infinitely differentiable boundary OG, 

Let A(x, D) be an l x I elliptic system of even order o that is infinitely dif- 

ferentiable in G. Let Bj ( x , D ) j =  1, ...,col/2 be the boundary operators that are 

associated with the elliptic system. Suppose that the 1 x l differential system 

Bj(x, D) has order coj < co and that B~(x, D) is infinitely differentiable in G. Suppose 

that 1 < p < oo and denote by H'~ B) the closure, in H'~ of the set of 

functions u in C~176 that satisfy Biu -- 0 on aG for j = 1, -.. coI/2. As usual we 

associate with A(x,D), Bs(x,D ) j = 1 , . . .~I /2  and G the unbounded operator 

Ag in H~ that satisfies D ( A ~ ) = H  ~ (G,B) and Agu = A(x, D)u for 

u e H~ B). 
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The question of existence of rays of minimal growth of the resolvent of 

A~ was investigated in [1], [5] and [6]. In the remainder of this section, we cite 

for convenience some known results of these works that will be used later on. 

Agmon's conditions I and II of Section 1 guarantee that the ray lo is a ray of 

minimal growth of the resolvent of  A~([1], [5] and [6]). Also if conditions I and 

II are satisfied for 0e[~1,a2]  , there exist constants c and R such that 

2 �9 p(A~) and 

(3.16) II(it- A~)-'H < c/12l. 

for 2�9 with [itl > R .  

We shall use in the sequel a parametrix for (2 -A~)  -1 with it �9 l0 that is defined 

in [5] provided that conditions I and II are satisfied on lo. The parametrix Po(2) 

of order zero is given by 

N N 

(3.17) Po(it) = ~ C j ( i t ) -  Y~ Dj(2) 
j = l  j = m + l  

where C j(2) (it �9 lo) is a pseud0differential operator and for f � 9  C~(G) 

,3,8, c,(a)y(x) = (2=) ,o,(x) f e'Xr it) (a,oA(x~) - it) 7 ' ( ~ )  (~) d~. 

Di(2) is defined for f � 9  C~(G) by 

f ~ 
(3.19) Oi(it)f(x ) = (2rt)-'+ '~kj(x) e '~'r it)a/(x', x,, ~', s,it) (dpff),(~', s)d~'as 

where ~bj, j = 1,..., N is a partition of unity of (7 subordinate to the system of 

coordinate neighborhoods Oj with the properties described in Section 1. The 

scalar function c j  is infinitely differentiable in (7 and the support of ~j is contained 

in 01. 0(~,;t) is infinitely differentiable for ~ � 9  and it el0, 0(~,it)= I for 

1r +litl z/'~ >1  and 0( r  for 1r  litl ,o____�89 Similarly 0'(r is 

infinitely differentiable for r �9 R *-~ and it �9 lo, 0'(r it) = 1 for [ U[ 2 + I it lz/, > 1 

and O'(U,).) = 0 for [r l= +t i t [  TM <__�89 

The ! x l matrix a 7 is defined for x~ >_- O, s >__ O'and for ~' .and ~, �9 Io such that 

U[ b~ l i t / ~  0 and satisfies the estimates 

[D ~, ~, , , , ~, O~, D'~ d(x , x , ,~  , s,,,.) l 

(3.20) 
< q , , , pexp[ -c , ( x ,  4-s)(lr + + 

See .[5]. The following Lemmas of [6] are used in Section [4]. These Lemmas 
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are proved in [6] and are used there to estimate the Lp norms of singular integral 

operators that are derived from C j(2) and DiQ.). 

LEMMA 1. Let 1 < p < o9, 0 < R < o9. There is a constant c = c(p, v, R) such 

that i f  k(x,~) vanishes for Ix I >= R and [ ~[l#l[D:D~k(x,~)l <= 1 for [a I <= v + 1 
and lfl [ <= v then the estimate 

(3.21) [ (2tO-" f e'~ek(x,~)f(r162 <= clflr,(e, ) 

holds for f e c~(R~). 

Given k andf tha t  satisfy the assumptions of Lemma 1 we write 

(3.22) Op(k)f(x) = (2~) -v f e'Xgk(x, o f ( o  d~. 

LEM~A 2. Let l < p <  o9. There is a constant c=c(p,v ,R)  such that i f  

k(x', x ,  ~', 2) has support in ]x'] < R and satisfies 

(3.23) lr162 k(x', xv, r s) I < (x~ + s)-I 

Sor s > O, x, > O, I Z v and l a'l --< v then the estimate 

(3.24) [(2~r) -'+~ f e'~'r162162 ', s) d~'dSlLI,(R~) <= cIf[L~(R ~) 

holds for every f~c~(R' )  with support in the interior of  R~. As usual 
R ;  = {x, x e R',x~ >= 0}. 

Given k and f that satisfy the assumptions of this Lemma we write 

(3.25) O'p(k)f(x) = (2~) -v+ 1 f ei~,~'k(x ,, x~, ~', s)f~(~', s)d~'ds. 

LEMMA 3. Let 1 < p < o9. Suppose that k(x' ,x, ,~' ,s,r) vanishes for Ix' I > R 
and that there is a constant c such that 

,, ~. r <e-a~-+')(Ir176162 I +r),-~,-IP'l (3.26) [ D,, Dg, k(x', x,, = 

for [a' l <v  and lp'] <_v and with co> 1. Then for each p there is a constant 

Cl = cx (p, c, R, v) such that for f e c~(R ~) with support in the interior of  R~+ we have 

for all r~ > r~ >= 1. 
Finally we observe that the following estimates are proved in [5] and [6]: 
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Suppose that  condit ions I and II  are satisfied on 1o and choose R so that  it ~ p(A) 

for  it e lo with [itl >--R. Then  there exists a constant  c such that  for  it e 10 and 

f ~ C ~ ( G )  we have 

IIc,(it).rll co + l itl)-'ll i l l i =  1 , . . . , N  (3.28) 

and 

(3.29) IIo,(it)/ll--< c(1 -I-litl)-'llsll i =  m + 

and there exists a constant  c such that  

(3.30) 1I ((2 - A t )  -1 - Po(i t)) / l l  --< 41 + I it I ' + " ~  

provided that  i te  lo, l itl > R andfeC~ The norms ment ioned in estimates 

(2.28)-(2.30) are the norms o f  elements in H~ 

For  it e lo we cont inue to denote  by Ci(it), Di(it) and Po(it) the extensions of  

Ci(it), Di(it) and Po0-) to bounded  operators  in H~ 

4. Theorems and proofs 

THEOREM 4.1. Let re/2 < al < t~2 ~ 3rc/2. Suppose that conditions I and I I  

are satisfied on l~, and that I~i c p(A~) for i = 1,2. Then there exists a constant M 

such that for  z ~ r ~  - ~1, 3~/2 - a2), we have 

(4.1) f ,  eZZ(it - A~l)-lll __< M. 

PROOF. The p roo f  of  Theorem 4.1 depends on the following Lemmas.  

LEMMA 4.1 Assume that conditions I and I I  are satisfied on 1~, and that 

l~, ~ p ( A t ) f o r  i = 1,2. Suppose that u /2  < a 1 < a2 < 3u/2. Then there exists a 

constant M such that 

f, II (4.2) ~ (e;~Z(it - A t ) - i  _ Po(it))dit < M 

for  z e F ~  - a l ,  37t/2 - a2). 

PROOF. Lemma 4.1 is an immediate  consequence of  estimate (3.30). 

LEMMA 4.2. Assume that conditions I and I I  are satisfied on l~,for i = 1,2 

and suppose that 1:/2 < al  < t~ 2 < 3rc/2. Set C(2) = Cj(2)for  it~y and for  some 

j with 1 < j  < N. Then there exists a constant M such that 
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for z e F~  - ~1 ,3 . /2  - ~2). 

PROOF. Let Z be a real valued infinitely differentiable function such that )~(O = 0 

for I l l  __<1 and 2(~)= 1 for 14] > 2 .  For zeF~ e x , 3 , / 2 - e 2 ) s e t  

aa(x,~,z) = -~-ni O(x) e~)~(4)(ao, A(x,4) - i ) - a d l  (4.4) 

and 

(4.5) 
1 y, 

a2(x,4,z) -- 5 - f f  44x) e~Z0(4,1) (1 - z (O)(aoa(x ,  r - 1 ) - 1 d t  

Choose non negative numbers r~ and r2 so that for every x and 4 # 0 the eigenval- 

ues of %A(x, 4) satisfy 2r 114] _-<[1[ TM =< �89 r2[ 4 [. Let L-(R) be the boundary of 

F(~I, ~2) n {1; r~R < ]1[ TM < r2R }. Let z e F ~  - ~1 ,3 . /2  - ~2) and suppose 

that]~/  __< v + l a n d [ f l  I < v. Then[4fD]D~a~(x,4,z)isa linear combination of  

terms of the type 

(4.6) 2~i [ 41 ~.-q~l) e (D~ X(4))D~ D~ (%a(x, ~) - i ) -Xdl  

with I cq I + I ct2 [ = [~ l and Ifll I + lfl21 = [fl[" Setting I = 141 ~# it is easily seen 

that  if I 11 = 0 there exists a c such that (4.6) is bounded by 

fz'- ~2 #2 (4.7) c sup [D;'O(x)] ID~D. (ao~A(x,n)-p)-Xldp. 
x,lq I --x (1) 

For  Iflll ~ 0 ,  DchE(~) vanishes for [ 41 < 1 and for 14i > 2. For 1 < l~] < 2 the 

path of integration in (4.6) can be deformed to the boundary of F(~ 1, ~2) ~ {1; r 1 

< I t l  I/'~ =< 2r2} and the integral thus obtained is bounded by a constant inde- 

pendent  of x, 4 and z. As a result there exists a c such that 

(4.8) [4tJI IDa, D~ a,(x,~,z)l < c. 

Nowa~(x,~,z) = 0for  [~l => 2. For]  ~l =< 2, the path of integration in (4.5) can 

be deformed to the boundary of F(e~, e2) n {t ;[  111/o, < 2re}" It follows from the 

definition of 0(4, 2) that there exists a c such that 

(4.9) 14 l'l D: Dff a2(x,~,z)[ < c 

for I ~1 < v + 1, I fll < v and z e F ~  - ~ ,  3 . / 2  - t z 2 ) .  

Using (4.4), (4.5) and the definition of C(1) we find that f o r f e  C~(G) 

(4.10) ( ( 2 - - ~  f~ e~c(2)dt) f )(x) = (2~)-" f e'x'(adx&z) + a2(x'~'z)f(~)d'" 

(4.10) and estimates (4.8) and (4.9) combined with Lemma 1 guarantee the existence 

of a constant M such that (4.3) is satisfied. 
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LEMMA 4.3. Suppose that conditions I and II  are satisfied on the ray l o. 

Let O(2), 2 ~ lo, be one of the families Oj(2) given by (3.19). Then there exists 

a constant M such that 

t 1 ft e~D(2)d21<M (4.11) ~ ~ = 

for all z such that Re(ze i~ < O. 

PROOF. It follows from estimate (3.20) and from the definition of D(2) tha t  

there exist c~ and c2 such that for 2 E lo and z with Re (zd ~ < 0, for I ct'l < v and 

for I '1 --< v the estimate 

(4.12) IDa; D~'ea'~(x)O'(~',2)aT(x',x,,r 

< cI e-~'(='+')(lr +llal'/ ')(l r + 121'/") ' - ' ' - I r l  

is satisfied. It follows from (4.12) and Lemma 3 of Section 3 that (4.11) holds witli 

l0 replaced by 10 n {2; [;tJ < n} and with a constant M independent of n = 1,2,.-.. 

A consequence of (3.29) is that for z with Re(ze l~ < 0 

fl 1 f e~D(2)d2. 1 e~D(2)d2 = lim ~ o~:t~l~_~ (4.13) 2hi o ~-.o~ 

Hence (4.11) follows. 

A consequence of  Theorem 4.1 is the following Theorem. 

THEOREM 4.2. Assume that conditions I and II are satisfied on lo, and that 

[o, c p(AV) for i = 1,2. Let 0 < 01 < 02 < 27z and suppose that 02-01 < 7r. For 

f e D(AVa) let 

(4.14) Epf= 1 f ;_1(  2 _  A~)_ZA~fd2 . 
2~i j y,(o,,o2) 

Here r is chosen so that ().;I). I < r}c  p(A~). Then Ep has an extension to a 

bounded projection in H~ that we continue to denote by Ep. For 

f ~D(A~) we have Epf ~D(A~) and A~EJ= EpA~f. Furthermore tr(APEp)-{O} 

= a(A~) n F(01,02) and A~Ep ~ ~,(0~, 02, c). 

PROOF. The assumptions of this theorem imply that conditions I and II for the 

elliptic system e~~ D) and the boundary operators Bj(x, D) j = 1,... col/2, are sat- 

isfied on the rays loo, and loo2.Also ei~ the operator in H ~ that is associated 

with ei~ and Bj(x,D)j  = 1... o91/2. It follows from these remarks that We 
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may assume without loss of  generality that 7:/2 < 0 t < 02 < 37:/2. As has already 

been mentioned before there exists a 6 > 0 such that conditions I and II are satisfied 

on Io for 0 ~ [01,01 + 26] U[02, 02 - 23] and such that At  E ]~(01 + 26-27:, 01, c) 

and At  ~ ]~ (02 - 27:, 02 - 26, c). This implies that A~satisfies the assumptions of  

Theorem 4.1 with ~1 = 01 + 6 and ~2 = 02 - 6. Also it is easy to verify that for 

f ~ D(At) 

(4.15) Evf=127:i f,,,~,.,,: -1(2-At) Atfd2" 

Using Theorem 4.1, Lemma 3.1 and observing that 3.9 holds, we find that E v has 
an extension to a bounded projection in H~ Also it follows from Lemma 3. I 

and from the definition of 6 that to complete the proof it is sufficient to check that 

a(AtEv) ~ or(At) n F(01,02). Suppose that 20 ~ a(A~) n F(01,02) and let f be an 
eigenfunction of A~ corresponding to the eigenvalue 20. Then asis easily checked 

1 
f 2-1(2 _ at)-lA~fd2 = f  (4.16) 27:i a~,(o~,o2~ 

A consequence of(4.15)and (4.16) is that E J = f ,  A~Evf= 2 o f a n d  20 ~tr(AtE v) 
It will be convenient in the sequel to denote the operator E v of Theorem 4.2 by 

E(01, 02). 

THEOREM 4.3. Assume that 7:/2 < 01 < 02 < 37:/2, - 7:]2 < q~l < q~2 < 7:/2 

and that conditions I and II are satisfied on lo provided that O~ (q~x, ~b2) U (01, 02). 

Suppose that for i= 1,2, we have lo,~p(At) and Ir Let El=E(01,02) 
and let E2 =E(ffl ,  ~b2). Denote by E o the spectral projection of A• associated with 

the set {2; 2 r F(01, 02) U F(q~x, q52)}. Then 

(4.17) H~ = ~ (~ EiH~ 
i=O 

The limits 

1 f ( 2 -A~) - ' f d2  (4.18) ,-,oolim ~ -(0,.0~) 

and 

1 f (2_A~)_lfd) " (4.19) ,-.o~lim ~ "(*,,*,) 

exist for every f ~ H~ Also 
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(4.20) 

and 

(4.21) 

PROOF. 

E l f =  lim 
II--~ O0 

ELLIPTIC OPERATORS 

1 f (;t - A~)-Ifd2 + (02 - Ot)/2~ f 
J 7 (O,,O2) 
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1 f~ (2 - An)-~fd2 + (~b 2 - dpx)/2n f .  E2f= ,-,oolim ~ "(~,,*~) 

For  t > 0 let 

(4.22) Sl(t) = 2~ril f~(~,,~2) eat() ' -A~-ld2 

and put  

1 f~ e-at 0. - A ~  -1 d2. (4.23) S2(t) = 2 - ~  (~,.~,) 

Then for f ~  H~ and i = 1,2, E l =  limt~o S~(t)fi Also 

1 f~ 0,-An) -~ d2 (4.24) E~ = 2rci 

where ~ is the boundary of {2; ;t r F(0~, 02) L) F(~bt, ~b2) , [2[ < R} and g is chosen 

so that {2; 2 r (01, 02) u F(tkl, ~b2), [ 21 _>- R} ~ p(A~. 
It is easy to verify, using the standard techniques of operational calculus, that 

for t > 0 S1(t)S2(t ) --S2(t)St(t)= 0 and that for i =  1,2, Si(t)Eo = EoS~(t)=O. 
As a result E~Ei = EjE~ = 0  provided that i,j = 1, 2, 3 and i # j ,  and this implies 

that the sum ~2= o @ EiH~176 is direct. To check that  2 Ei=O @Ei H~ 
= H~ it is sufficient to verify that  for f~  D(A~) we have E~=o E~f=f. Let 

f e  D(A~). Using (3.9) we find that 

1 
f 2-1(2 - a~) -1Anfd2 E~f + E2f = 2-~i J ~ r ( 0 1 , 0 2 )  

(4.25) 
1 

f 2-  ~0, - A n) - tAgfd2 
+ " ~ -  .I y~(~.~2) 

where r is chosen so that {2; 2[ <_ r} ~ p(A~). Observing that there exists a 
constant c such that 

(4.26) II (2 - A~)-I It <c/12~ 

provided that 2 r F(01, 02) U F(ffl, r  121 >_-R and using (3.7) we find that 

1 f~ O. - A~)- tfd2 + f (4.27) Elf+ E2f = 2hi 

i.e., El f+ E2f = - Eof + fi 
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Furthermore f o r f e  D(Ag) we have 

(4.28) 
1 f ( 2 - A ~ ) - ' f d 2 -  1 fr  ) '-l() '-APn)-'Affd2 

2hi ~,(o, ,o~) 2hi ,}o~,o,) 

+ ~ ,~o~,o~) 

and the limit 4.18 exists. Here ~(O,Oz) = 7,(0,02) (~ {).; ]~.1 < n}. 

Using (3.11) and the fact that AnE(~ ~(0~, 02,c), we verify that there exists a 

constant c such that 

1. r (,~ 
(4.29) ~ J~-(0,.0~) ~ -  A~)-lEzd2 <= e 

for n = 1,2, ... .  Similarly there exists a constant c such that (4.29) holds with E x 

replaced by E2. The boundedness of AEo and (3.11) guarantee that there exists a 

constant c such that (4.29) holds with E~ replaced by Eo. It follows from (4.17) 

that there exists a c such that 

(4.30) ~ ( 0 . -  A~) -1 d2 __<c 
Jy "(0~,0.,) 

for n = 1,2,-... The relation (4.30) combined with the existence of  the limit (4.18) 

for f ~  D(A~)guarantee that the limit (4.18) exists for every f ~  H~ 
The existence of  the limit (4.19) is proved in a similar way. 

To show that (4.20) holds it is sufficient to check that (4.20) is satisfied for 

f e  D(Ag). For such f, (4.20) follows from (3.9) and from the relation 

J, , 1 )'-'(~ - A~)-lA~fd)" - 2hi 2hi ,,~o~,o,) 
(4.31) 

- ( 
2hi ,s ~ (o,,o~) 

r 

The proof of 4.21 is similar. 

From Theorem 4.2 and 4.3~we get 

COROLLARY 4.1. Suppose that conditions I and Il are satisfied on l,/2 a n d  

i-,/2. Then there exist bounded projections E~ and E + in H~ that the  

following is satisfied: H~176 ). A~ is comp!etely 

reduced by this direct sum decomposition and each of  the operators A~E 7 and 

- APnEp is the infinitesimal generator of  an analytic semigroup. 
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PROOF. Let 20 E p(A~). Replacing At by A~ - 201 if 0 ~ a(A~) we conclude 

that it is sufficient to prove the corollary with the additional assumption 

0 e p(A~). It follows from the assumptions on l+:/z that there exists a ~ > 0 such 

that conditions I and II are satisfied on lo provided that I 0 ___ zc/2j < ~5. The 

discreteness of the spectrum of A~ and the assumption that 0 e p(A•) guarantee 

that the assumptions of Theorem 4.3 are satisfied for some 0 i and t~ i = 1,2. Put 

E 7 = E1 + E0 and let Ep + = E 2 where E~, i = 0, 1, 2, are the projections defined in 

Theorem 4.3. A consequence of Theorem 4.3 is that 

HO,p (G) = E;HO,p(G) �9 E;H~ 

and that Aft is completely reduced by this direct sum decomposition. Theorem 4.2 

implies that A~E1 ~ ~,(01,02,c) and that A~E:~ ~ (~bl,~b2,c). It follows from 

these relations that each of the operators A~EI and-A~E2 is the infinitesimal 

generator of an analytic semigroup (cf. [-4]). Also, since A~E o is bounded, the 

same result holds for APnE1 + A~Eo. 
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